已知抛物线Y=mX2-(3m+4/3)X+4与X轴交于AB两点,与Y轴交于C点,三角形ABC为等腰三角形,求抛物线的解析式
人气:414 ℃ 时间:2019-08-19 06:15:12
解答
y=(mx-4/3)(x-3)
A[4/(3m),0),B(3,0)
x=0,y=4,C(0,4)
若AC=BC
因为CO垂直BC,所以他也是底边中线
所以 AO=BO=3
A(-3,0)
4/(3m)=-3
m=-4/9
若BC=AB
由勾股定理
BC=√(BO^2+CO^2)=5
所以AB=|3-4/(3m)|=5
3-4/(3m)=5,3-4/(3m)=-5
4/(3m)=-2,4/(3m)=8
所以m=-2/3,m=1/12
若AC=AB
则AC=√(AO^2+CO^2)=√(16/9m^2+16)
AB=|3-4/(3m)|
√(16/9m^2+16)=|3-4/(3m)|
平方
16/9m^2+16=9-8/m+16/9m^2
16=9-8/m
m=-7/8
所以m=-4/9,-2/3,1/2,-7/8
所以
y=-4x^2/9+4
y=-2x^2/3+2x/3+4
y=x^2/2-6x/17+4
y=-7x^2/8-31x/24+4
推荐
- 已知抛物线y=x2+bx+c与y轴相交于点A 与x轴正半轴交于B,C两点且BC等于2三角形ABC的
- 已知抛物线y=mx^2-(3m+4/3)x+4与x轴交与两点A,B,与y轴交于C点,若三角形ABC是等腰三角形,求m的值
- 已知抛物线y=k(x+1)(x-3/k)与x轴交于点A,B两点,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数为
- 已知y=ax^-(3a+三分之四)x+4和x轴交与A,B两点,和y轴交与C,三角形ABC是等腰三角形,求抛物线关系式
- 抛物线y=ax^2+[(4/3)+3a]x+4的开口向下,它与x轴交于A,B两点,与y轴交于点C,如果△ABC是等腰三角形,求出a的值(过程)
- ( )风拂面 ( )风送爽 ( )风细雨 ( )风习习 ( )风呼啸 ( )风刺骨 ( )风骤雨 ( )风大作问题
- 完全燃烧1千克无烟煤放出的热两是多少?
- 现有四个有理数3,4,-6,10,将这四个数用且只用一次进行加减乘除四则运算,使其结果等于24,[本质不同的].
猜你喜欢