已知过原点的抛物线y=-2x²;+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴
C,D两点,与原抛物线交与点P.(1),求点A的坐标,并判断△PCA存在时它的形状
(2),在x轴上是否存在两条相等线段,若存在,请一一找出,并写出他们的长度(可用含m的式子表示);若不存在,请说明理由;(3),△CDP的面子为S,求S关于m的关系式.(4),是否存在点P,使得△PCD为直角三角形.若存在求出P点的坐标,不存在说明理由.
人气:371 ℃ 时间:2019-11-12 11:01:08
解答
(1)原抛物线:y=-2x2+4x=-2(x-1)2+2,
则平移后的抛物线为:y=-2(x-1-m)2+2,
由题得{y=-2(x-1)2+2y=-2(x-1-m)2+2,
解得{x=m+22y=-m2+42,
∴点P的坐标为(m+22,-m2+42);
(2)抛物线:y=-2x2+4x=-2x(x-2)
∴抛物线与x轴的交点为O(0,0)A(2,0),
∴AO=2,
∵C、D两点是抛物线y=-2x2+4x向右平移m(m>0)个,
单位所得抛物线与x轴的交点∴CD=OA=2,
①当0<m<2,即点P在第一象限时,如图1,作PH⊥x轴于H.
∵P的坐标为(m+22,-m2+42),
∴PH=-m2+42,
∴S=12CD•2•(-12m2+2)=-12m2+2,
②当m=2,即点P在x轴时,△PCD不存在,
③当m>2即点P在第四象限时,如图2,作PH⊥x轴于H.
∵P的坐标为(m+22,-m2+42),
∴PH=|-m2+42|=m2-42,
∴S=12CD•HP=12×2×m2-42=12m2-2;
(3)如图3,若以E、O、A、F为顶点的四边形是平行四边形,则EF=OA=2
由轴对称可知PE=PF,
∴PE=12OA=1,
∵P(m+22,-m2+42),
∴点E的坐标为(m2,-m2+42),
把点E代入抛物线解析式得:-2×(m2)2+4×m2=-m2+42,
解得:m=1.
推荐
- 如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P. (1)求点A的坐标,并判断△PCA存在时它的形
- 如图,把抛物线y=1/2·x²平移得到抛物线m,抛物线m经过点A(-6,0)和原点,顶点为P...
- 解析式:y=x²-4x-5 请写出一种平移方法,使平移后抛物线的顶点落在原点处
- 已知二次函数y=(m-2)x^2-4x+m^2+2m-8的图象经过原点,它可以由哪条顶点在原点的抛物线经过平移得到?说出
- 已知二次函数y=(m-2)x2-4x+m2+2m-8的图象经过原点,它可以由哪条顶点在原点的抛物线经过平移得到?说出平移的过程.
- 英语翻译
- far easy bad big comfortable fast fine careful thin well
- 如图,BP平分∠ABC交于CD于点F,DP平分∠ADC交于AB于点E,若∠A=38°,∠C=46°,求∠P的度数?
猜你喜欢
- l am not good at piaying basketball.(同义句)l ____ ____ ____ ____ playing basketball.
- 在三角形ABC中,角C=60度,高BE经过高AD的中点F,BE=10CM,求BF,EF的长
- 用炭粉在高温条件下还原CuO的缺点,说全面点.
- 在每个工序中确定加工表面尺寸和位置度所依据的基准是什么?
- 血红蛋白分子中含有574个氨基酸,4条肽链,在形成次蛋白质分子是,脱下的分子数和含有-NH2的数目至少是
- 为什么一天当中,气温最高值出现在午后14时?而不是12点?
- 五分之一:六分之一的最简整数比是5:6,这题对的错的?
- 4/9:1/6=x:1/3 解方程 会的大神给我解了它