19日数学12.若在(1+ax)^n的展开式中,所有项的二项式系数之和为32,x^3的系数为-80,
(1)求a
(2)求(1+ax)^n的展开式的所有项的系数和.
人气:477 ℃ 时间:2020-05-13 16:14:27
解答
(1)因为展开式中,所有项的二项式系数之和为:
C(n,0)+C(n,1)+C(n,2)+…+C(n,k)+…+C(n,n)=2^n =32
所以n=5
(1+ax)^5的项T(r+1)=C(5,r)*1^(5-r)*(ax)^r=C(5,r)*(ax)^r,
其中含x^3的项为:T4=C(5,3) *(ax)^3=10a^3x^3
那么10a^3=-80 即a^3=-8 ,所以a=-2
(2)(1-2x)^5的展开式的所有项的系数和=(1-2)^5=-1 (直接令x=1就可求的得)
推荐
- 数学行程问题,快点.
- 人生与风景
- 有理数的近似数和有效数字,
- 60处以5等于多少?39除以3呢90处以5呢200-100除以2那250乘0乘3(⊙o⊙)?50加150除3呢?
- 青青子衿,悠悠我心是什么意思?
- 在我国主要山脉中,既是省界,又是地形区界限的山脉有-----------------------------------
- 甲乙两人跑步,甲每小时跑13km,乙每小时跑11km,乙比甲多跑30分钟,则乙比甲多跑3km,甲乙共跑多少km
- 14\5-(2.8-5/7)+2/7怎么简算
猜你喜欢