> 数学 >
若4sin2x-6sinx-cos2x+3cosx=0.求:
cos2x−sin2x
(1−cos2x)(1−tan2x)
的值.
人气:356 ℃ 时间:2019-08-24 05:50:39
解答
∵4sin2x-6sinx-cos2x+3cosx=0,
∴4sin2x-cos2x-6sinx+3cosx=0,
∴(2sinx+cosx)(2sinx-cosx)-3(2sinx-cosx)=0,
∴(2sinx-cosx)(2sinx+cosx-3)=0,
∵2sinx+cosx≤
5
,∴2sinx+cosx-3≠0,
∴2sinx-cosx=0,即cosx=2sinx,
cos2x−sin2x
(1−cos2x)(1−tan2x)
=
cos2x−sin2x
(1−cos2x)(1−
sin2x
cos2x
)

=
cos2x−sin2x
(1−cos2x)
cos2x−sin2x
cos2x
=
cos2x
1−cos2x

=
cos2x−sin2x
1−cos2x+sin2x
=
(2sinx)2−sin2x
sin2x+sin2x
=
3
2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版