∴4sin2x-cos2x-6sinx+3cosx=0,
∴(2sinx+cosx)(2sinx-cosx)-3(2sinx-cosx)=0,
∴(2sinx-cosx)(2sinx+cosx-3)=0,
∵2sinx+cosx≤
5 |
∴2sinx-cosx=0,即cosx=2sinx,
∴
cos2x−sin2x |
(1−cos2x)(1−tan2x) |
cos2x−sin2x | ||
(1−cos2x)(1−
|
=
cos2x−sin2x | ||
(1−cos2x)
|
cos2x |
1−cos2x |
=
cos2x−sin2x |
1−cos2x+sin2x |
(2sinx)2−sin2x |
sin2x+sin2x |
3 |
2 |