∴4sin2x-cos2x-6sinx+3cosx=0,
∴(2sinx+cosx)(2sinx-cosx)-3(2sinx-cosx)=0,
∴(2sinx-cosx)(2sinx+cosx-3)=0,
∵2sinx+cosx≤
| 5 |
∴2sinx-cosx=0,即cosx=2sinx,
∴
| cos2x−sin2x |
| (1−cos2x)(1−tan2x) |
| cos2x−sin2x | ||
(1−cos2x)(1−
|
=
| cos2x−sin2x | ||
(1−cos2x)
|
| cos2x |
| 1−cos2x |
=
| cos2x−sin2x |
| 1−cos2x+sin2x |
| (2sinx)2−sin2x |
| sin2x+sin2x |
| 3 |
| 2 |
