(1)EF=BE-AF成立,理由为:
在△BCE中,∠BEC=90°,∴∠CBE+∠BCE=90°,
∵∠BCA=90°,∴∠ACF+∠BCE=90°,
∴∠CBE=∠ACF,
又BC=CA,∠BEC=∠CFA=90°,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
又∵EF=CF-CE,
∴EF=BE-AF;
(2)EF=BE-AF仍成立,理由为:
在△BCE中,∠BEC=120°,∴∠CBE+∠BCE=60°,
∵∠BCA=60°,∴∠ACF+∠BCE=60°,
∴∠CBE=∠ACF,
又BC=CA,∠BEC=∠CFA=120°,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
又∵EF=CF-CE,
∴EF=BE-AF;
(3)当∠α+∠BCA=180°时,结论EF=BE-AF仍然成立.
故答案为:∠α+∠BCA=180°.