1 |
1+x |
由于f(1)=ln(2),f′(1)=
3 |
2 |
y−ln2=
3 |
2 |
(II)f'(x)=
1 |
1+x |
当k=0时,f′(x)=−
x |
1+x |
因此在区间(-1,0)上,f'(x)>0;在区间(0,+∞)上,f'(x)<0;
所以f(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞);
当0<k<1时,f′(x)=
x(kx+k−1) |
1+x |
1−k |
k |
因此,在区间(-1,0)和(
1−k |
k |
1−k |
k |
即函数f(x)的单调递增区间为(-1,0)和(
1−k |
k |
1−k |
k |
当k=1时,f′(x)=
x2 |
1+x |
当k>1时,由f′(x)=
x(kx+k−1) |
1+x |
1−k |
k |
因此,在区间(−1,
1−k |
k |
1−k |
k |
即函数f(x)的单调递增区间为(−1,
1−k |
k |
1−k |
k |