函数奇偶性和区域对称性对定积分的作用和意义
人气:332 ℃ 时间:2020-01-28 19:33:56
解答
给你举个例子:
∫xe^x²dx,积分区间[-2,2],
一看积分区间关于原点对称,马上考擦被积函数的奇偶性.一看为奇函数,不用算结果为0.
再举一例:
∫∫(x+y)^2dxdy 积分区域D为x^2+y^2=1
首先化解一下∫∫(x^2+y^2+2xy)dxdy=∫∫x^2dxdy+∫∫y^2dxdy+2∫∫xydxdy
我们一看区域D关于x对称,马上考查被积函数y的奇偶性,2∫∫xydxdy项直接为0.
下面给你总结一下:
一元积分若区间关于原点对称考查被积函数的奇偶性,若为奇函数,结果为0.
二元积分若区域关于x轴对称,马上考查被积函数y的奇偶性;若为奇函数则结果为0.
关于偶函数我没说,因为它还是涉及了计算,不像奇函数那样直接为0.
若是感兴趣的话可以看一下相关的资料.
推荐
猜你喜欢
- 将充有m毫升NO和n毫升NO2 的量筒倒立于水槽中,再 通m毫升O2,若m<n,则充分反应后,量筒内气体体积
- 请问中国的24个节气都指的哪24个节气啊
- 已知在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点,求证:MN与PQ互相垂直平分...
- 同义句转换 Tom is twelve.Tom's brother is ten.Tom's brother is two _____ _____than Tom.
- a=0.5,b=8,c=2的比例中项
- 2009年5月13日用天干地支怎么表示
- 英语翻译
- 狮子和老虎进行1000米赛跑,当狮子离终点还有200米时,老虎离终点还有400米.如果它们保持速