> 数学 >
如图,过线段AB的两个端点作射线AM、BN,使AM∥BN,按下列要求画图并回答:画∠MAB、∠NBA的平分线交于E.

(1)∠AEB是什么角?说明理由.
(2)无论DC的两端点在AM、BN如何移动,只要DC经过点E,说明:AD+BC=AB.
人气:427 ℃ 时间:2019-12-14 17:51:58
解答
(1)∵AM∥BN,
∴∠DAB+∠ABC=180°,
∵AE、BE分别为∠MAB、∠NBA的角平分线,
∴∠1=∠2,∠3=∠4,
∴∠1+∠3=90°,
∴∠AEB=180°-90°=90°,∠AEB为直角;
(2)过E做EF∥AM,交AB于点F,

∵EF∥BC,
∴∠2=∠FEB,
∵∠1=∠2,
∴∠1=∠FEB,
∴BF=EF,
同理可证AF=EF,
∴AF=BF=EF,
∴F为AB的中点,
∵四边形ABCD为梯形,且F为AB的中点,
∴2EF=BC+AD;
又∵AB=AF+BF=2EF,
∴AB=BC+AD.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版