设向量a为n维列向量,a^t*a=1,令H=E-2a*a^t,证明H是正交矩阵
人气:116 ℃ 时间:2020-01-29 16:47:46
解答
H^TH = (E-2aa^t)^T(E-2aa^t)
= (E-2aa^t)(E-2aa^t)
= E-2aa^t-2aa^t+4aa^taa^t
= E-4aa^t + 4 a(a^ta)a^t
= E - 4aa^t + 4aa^t
= E
所以H是正交矩阵.
推荐
- 设α为n维列向量,E为n阶单位矩阵,证明A=E-2αα^T/(α^Tα)是正交矩阵
- 设向量a为n维列向量,a^t*a=1,令H=E-2a*a^t,证明H是正交矩阵
- 若设u为n维单位列向量,试证明豪斯霍德矩阵H=E-2uu^t,是正交矩阵
- 设向量x为n维列向量,x^t*x=1,令a=e-2x*x^t,证明a是正交矩阵
- 设α使n维列向量,A是n阶正交矩阵,则
猜你喜欢