1、三角形OAB的两顶点,O坐标是(0,0),A坐标是(1,0),顶点B满足角OBA等于π/2,求三角形OAB的内切圆的圆心的轨迹方程?
2、已知圆满足满足①截Y轴所得的弦长为2,被X轴分截两段圆弧,其弧长的毕为3:1,圆心到直线L:x-2y=0的距离为5分之根号5,求该圆的方程?
人气:241 ℃ 时间:2020-04-06 02:58:00
解答
楼主不好意思,这两道题尤其是第一题实在不好语言表述,可能显得很罗嗦,请耐心看完,其实很好理解
第1题主要是利用一个几何关系,第2题则是解方程是难点
1.以OA为直径做圆,无疑,圆上任意一点与O,A连接所成的角必为直角(直径所对的圆心角为90度),而在△OAB中,由题意知∠OBA=π/2=90度,因此可知点B必在以OA为直径的圆上,以此圆可求出是以(1/2,0)为圆心,半径为1/2的圆,故其圆内任意一点的横坐标取值范围都是(0,1)之间,纵坐标必在(-1,1)之间,(也就是此圆内任意一点的坐标范围)
设△OAB的内切圆圆心,即三角形的内心为P(x,y),则P必位于△PAB中,于是此P点的横坐标x的取值范围一定是在(0,1)之间,纵坐标y则是在(-1,1)之间,即满足0
推荐
- ①:有A,B,C三路长途汽车在车站停留,A停留的时间的三分之二是B停留的七分之四,B停留的时间的三分之二又是C停留的七分之四,已知C在车站停留的时间比A多13分钟,那么B在车站停留多长时间?
- 题1:某区举行运动会,其中某学校参加人数占总人数的1/15,若这个学校再多去10名运动员,则该校人数占总人数的2/23,问这次运动会共有运动员多少人?这个学校原来有多少人参加?
- 1.修一条水渠,原计划40人工作,12天完成.由于增加了工人,结果只用10天就修完了.问增加了多少工人?
- 方程5X+Y=-15的所有非正数解为
- 1.如果(5-3a/4)x的平方+5x-3=0是关于x的一元一次方程,则a=
- 数列2,3,8,29,()
- He will have his car repaired next week.求翻译
- 设a∈R,若函数y=eax+3x,x∈R有大于零的极值点,则( ) A.a>-3 B.a<-3 C.a>-13 D.a<-13
猜你喜欢