z=e(x+y)
x+y=u u'x=(1+y') u'y=x'+1
z=e^u
z'x=u'xe^u=(1+y')e^(x+y)
z'y=u'ye^u=(x'+1)e^(x+y)
dz=(1+dy/dx)e^(x+y) *dx +(1+dx/dy)*e^(x+y)dye^xy+y^3-5x=0请问怎么解呢e^xy=5x-y^3(xy)'e^xy=5-3y^2*y'(y+xy')e^xy=5-3y^2y'(xe^xy+3y^2)y'=5-ye^xyy'=(5-e^xy)/(xe^xy+3y^2)