如果a、b、c为互不相等的实数,且满足关系式b2+c2=2a2+16a+14与bc=a2-4a-5,那么a的取值范围是______.
人气:349 ℃ 时间:2019-08-20 06:07:23
解答
∵b
2+c
2=2a
2+16a+14,bc=a
2-4a-5,
∴(b+c)
2=2a
2+16a+14+2(a
2-4a-5)=4a
2+8a+4=4(a+1)
2,
即有b+c=±2(a+1).
又bc=a
2-4a-5,
所以b,c可作为一元二次方程x
2±2(a+1)x+a
2-4a-5=0③的两个不相等实数根,
故△=4(a+1)
2-4(a
2-4a-5)=24a+24>0,
解得a>-1.
若当a=b时,那么a也是方程③的解,
∴a
2±2(a+1)a+a
2-4a-5=0,
即4a
2-2a-5=0或-6a-5=0,
解得,a=
或a=-
.
所以a的取值范围为a>-1且a≠-
且a≠
.
推荐
猜你喜欢
- 学校美术作品展中,有50幅水彩画,60幅蜡笔画,蜡笔画比水彩画多百分之几?
- 已知集合M=(1,2,3,4,5,6,7,8,9,),集合P满足:P⊆M,且若a∈P,则10-a∈P,这样的集合P有几个
- 16的x次方 乘 4的4次方=2的14次方 求x
- 现在要赏金20 if we go by car,we must know the t( )r( )的括号应该填什么
- 一个长方体的长宽高分别是a.b.h,如果高增高3米,那么表面积比原来增加多少平方米?
- 英语翻译
- 敬畏生命文中描写白色纤维飘散情景的用意是什么?
- 真空可以传导热吗?