> 数学 >
已知MN∥EF∥BC,点A、D为直线MN上的两动点,AD=a,BC=b.
(1)当点A、D重合,即a=0时(如图1),试求EF.(用含m,n,b的代数式表示)
(2)请直接应用(1)的结论解决下面问题:当A、D不重合,即a≠0,
①如图2这种情况时,试求EF.(用含a,b,m,n的代数式表示)
②如图3这种情况时,试猜想EF与a、b之间有何种数量关系?并证明你的猜想.
人气:227 ℃ 时间:2020-04-08 20:19:05
解答
(1)∵EF∥BC,
∴△AEF∽△ABC,
EF
BC
AE
AB
,(1分)
AE
BE
m
n

AE
AB
m
m+n
,(1分)
又BC=b,
EF
b
m
m+n

∴EF=
mb
m+n
;(1分)
(2)①如图2,连接BD,与EF交于点H,
由(1)知,HF=
mb
m+n
,EH=
na
m+n
,(2分)
∵EF=EH+HF,
∴EF=
mb+na
m+n
;(1分)
②猜想:EF=
mb−na
m+n
,(1分)
证明:连接DE,并延长DE交BC于G,
由已知得:BG=
na
m
,(1分
EF=
mGC
m+n
,(1分)
∵GC=BC-BG,
∴EF=
m
m+n
(BC-BG)=
m
m+n
(b−
na
m
)=
mb−na
m+n
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版