设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要过程)
人气:403 ℃ 时间:2019-09-21 00:27:04
解答
正态分布的规律,均值X服从N(u,(σ^2)/n)
因为X1,X2,X3,...,Xn都服从N(u,σ^2) ,正太分布可加性X1+X2...Xn服从N(nu,nσ^2).
均值X=(X1+X2...Xn)/n,所以X期望为u,方差D(X)=D(X1+X2...Xn)/n^2=σ^2/n
推荐
- 设总体X服从正态分布N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,令U=n^(1/2)*(xˉ-μ)/σ,则D(U)=?
- 设总体X服从区间(a,b)上的均匀分布,X1,X2,······Xn是来自总体X的一个样本,则样本均值的方差为
- 设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,
- 设X1,X2,……Xn是总体X的样本,总体方差存在,X拔是样本均值,求X1与X拔的相关系数
- 设(X1,X2,...,Xn)为总体X~N(0,1)的一个样本,X拔为样本均值,S^2为样本方差,则有( )
- d(y)/d(x)=cos(x+y) 的通解怎么求啊
- 1:三棱锥S-ABC侧棱为L,底面边长为a,写出求此三棱锥S-ABC体积的一个算法
- 西瓜、苹果、香蕉和牛奶可不可以一起吃
猜你喜欢