在数列{an}中,a1=3,an=-a(n-1)-4n(n≥2,且n∈N*),数列{an}的前n项和Sn
(1)证明:数列{an+2n+1}是等比数列,并求{an}的通项公式
(2)求Sn
要详细过程~谢谢
人气:213 ℃ 时间:2020-04-03 14:03:35
解答
(1)
证:
an=-a(n-1)-4n
an+2n+1=-a(n-1)-2n+1=-a(n-1)-2(n-1)-1
(an+2n+1)/[a(n-1)+2(n-1)+1]=-1,为定值.
a1+2+1=3+2+1=6
数列{an+2n+1}是以6为首项,-1为公比的等比数列.
an+2n+1=6×(-1)^(n-1)=-6×(-1)^n
an=-2n-1+6×(-1)^(n-1)=-2n-1-6×(-1)^n
(2)
Sn=a1+a2+...+an
=-2(1+2+...n)-n-6×[(-1)^1+(-1)^2+...+(-1)^n]
=-n(n+1)-n-6×(-1)×[(-1)^n-1]/(-1-1)
=-n²-2n-3×[(-1)^n-1]
推荐
猜你喜欢
- 工程队修一条长300米的路,第一天修的米数如果再加上9米,正好是全长的7/20,工程队第一天修了这条路的百分之几?
- ——,——,——,——,——,——等分类单位进行分类?
- 已知3的A次方=4,9的B次方=8,27的C次方=10,求27的A+3C-2B次方的值
- this flower is very beautiful改为感叹句
- never的短语
- 三角形的三个顶点分别在曲线xy=a(0
- 1/2x+1>-3 -2x-4<4x+4 2x+1>3 2-x<1 2(x+1)<3x 3(2x+2)≥4(x-1)+7 x/2+1>x 2/3x≤1/3(x-2)
- 用记忆犹新造句