y2 |
a2 |
x2 |
b2 |
∵e=
c |
a |
| ||
2 |
设M(x,y)为双曲线上任一点,则
|PM|2=x2+(y-5)2
=b2(
y2 |
a2 |
=
5 |
4 |
①若4≥2b,则当y=4时,
|PM|min2=5-b2=4,得b2=1,a2=4.
从而所求双曲线方程为
y2 |
4 |
②若4<2b,则当y=2b时,
|PM|min2=4b2-20b+25=4,
得b=
7 |
2 |
3 |
2 |
49 |
4 |
从而所求双曲线方程为
y2 |
49 |
4x2 |
49 |
| ||
2 |
y2 |
a2 |
x2 |
b2 |
c |
a |
| ||
2 |
y2 |
a2 |
5 |
4 |
y2 |
4 |
7 |
2 |
3 |
2 |
49 |
4 |
y2 |
49 |
4x2 |
49 |