| b2+c2−a2 |
| 2bc |
| bc |
| 2bc |
| 1 |
| 2 |
因此,在△ABC中,∠C=180°-∠A-∠B=120°-∠B.
由已知条件,应用正弦定理
| 1 |
| 2 |
| 3 |
| c |
| b |
| sinC |
| sinB |
| sin(120°−B) |
| sinB |
| sin120°cosB−cos120°sinB |
| sinB |
| ||
| 2 |
| 1 |
| 2 |
解得cotB=2,从而tanB=
| 1 |
| 2 |
所以∠A=60°,tanB=
| 1 |
| 2 |
| c |
| b |
| 1 |
| 2 |
| 3 |
| b2+c2−a2 |
| 2bc |
| bc |
| 2bc |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| c |
| b |
| sinC |
| sinB |
| sin(120°−B) |
| sinB |
| sin120°cosB−cos120°sinB |
| sinB |
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |