概率排列问题
假定一组n个物体,其中n1个是第一种类型(相互间无差异),n2个是第二种类型,.,nk个是第k种类型,当然n=n1+n2+.+nk,这n个物体的不同排列是?求推导过程.
N种不同的安排乘以第一类n1!乘以第二类n2!乘以第k类nk!等于n!
这里面用到了排列和乘法原理的n!*n2!*n3!再乘以N我就有点蒙了,
N*(n1!*n2!*n3!)=n!
5个红弹子,2个白弹子,3个蓝弹子排成一行,如果同色的弹子相互没有区别。求全部可能的安排数。
假定存在N中不同的安排,则N乘以(a)5个红弹子自身的排列方式(b)2个白弹子的排列数,(c)3个蓝弹子的排列数(也就是用5!乘N),我们就得到10个各不相同的弹子的排列数10!因此
(5!3)N=10!N=10!/(5!3)
太抽象了,是不是就用到了乘法原理?做这件事分3部,第一步有5!种不同的方法,第二部有2!种不同的方法,第三部有3!中不同的方法,完成这件事有5!种不同的方法,我是这么理解的,这个N还是不懂?
人气:446 ℃ 时间:2020-02-06 02:28:50
解答
N指的的是同类物体认为是一样时这n个物体的排列数,很明显和将n个物体看成不同的排列数n!是不同的.
我们想办法将N种情况和n!种情况对应上.
方法就是给各类物体编号,如第一种类型中n1个物体是相同的,编号的方法就是n1!种,
编完号就变成不同的物体的,
总的编号方法为n1!n2!.nk!
所以N种情况中每一种情形可和n!中n1!n2!.nk!个排列对应上.
N(n1!n2!.nk!)=n!
N=n!/(n1!n2!.nk!)
推荐
猜你喜欢
- 当x=3+1时,x2-2x-3的值是_.
- 在三角形ABC中,已知角B等于60°,b=4,三角形的面积=根号3,求三角形的周长
- 有蜘蛛,蜻蜓,禅三种动物共20只,共有腿124条,翅膀22对,问蜻蜓有多少只?
- 如图,在△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,△ABC是等腰三角形吗?为什么?
- 已知函数f(x)=x+1/x,(1)用定义证明:f(x)在(0,正无穷)上是单调递增函数 (2)
- The rain began to beat heavily ___ the windows
- 导数(很简单的一个)
- 属于集约型的和属于粗放型的有哪些?