> 数学 >
证明:若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界.
人气:449 ℃ 时间:2019-08-20 21:02:40
解答
反证法:设f(x)在(-∞,+∞)内无界
因为f(x) 在(-∞,+∞) 内连续,且f(x)在(-∞,+∞)内无界,则当x趋于∞时f(x)也趋于∞
则limf(x)不存在
与已知矛盾
所以若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版