连接DE,∵AE=2CE,BD=2CD,
∴
| CE |
| CA |
| CD |
| CB |
∴△DCE∽△ABC,
∴∠CED=∠CAB,
∴AB∥DE,
∴△CDE∽△CBA,
∴
| DE |
| AB |
| EC |
| AC |
| 1 |
| 3 |
∴
| S△CDE |
| S△CBA |
| 1 |
| 9 |
∵S△ABC=3,
∴S△CDE=3×
| 1 |
| 9 |
| 1 |
| 3 |
且∠EDA=∠BAD,∠BED=∠ABE,
∴△DEF∽△ABF,
∴
| EF |
| BF |
| DE |
| AB |
| 1 |
| 3 |
∴设S△DEF=x,则S△AEF=S△BDF=3x,S△ABF=9x,
∴x+3x+3x+9x=3-
| 1 |
| 3 |
解得:x=
| 1 |
| 6 |
∴S△DEF=
| 1 |
| 6 |
∴S△DEF+S△CDE=
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |

