用等价无穷小原则计算 lim(x→0) [√(1+x)+√(1-x)-2]/x^2= 答案是-1/4
人气:105 ℃ 时间:2020-06-14 03:19:31
解答
lim(x→0) [√(1+x)+√(1-x)-2]/x^2(先运用洛必达法一次)
=lim(x→0) 1/2[1/√(1+x)-1/√(1-x)]/(2x)
=lim(x→0) [√(1-x)-√(1+x)]/[4x(√(1+x)√(1-x))](分子有理化)
=lim(x→0) [√(1-x)-√(1+x)][√(1-x)+√(1+x)]/{[4x(√(1+x)√(1-x))][√(1-x)+√(1+x)]}
=lim(x→0) -2x/{[4x(√(1+x)√(1-x))][√(1-x)+√(1+x)]}(约去x,直接代入)
=-1/4
推荐
猜你喜欢
- 一辆汽车从甲地到乙地,行了全程的40%,离终点还有5千米,甲乙两地相距多少千米
- the big minute hand did not move.为什么不是the big minute hand was not move.
- However mean your life is,meet it and live it ;do not shun it and call it hard names.It is not so bad as you are.It look
- 已知直线l1:y=x+m和L2:y=-2x+n交于点P(-2,0),l1交y轴于点A,l2交y轴于点B.
- 『汉译英』“第二,我们应该把老师当成朋友.不要害怕老师,多与老师相处.”求翻译
- 士不可不弘毅,任重而道远.
- 民族资本主义与官僚资本主义的区别
- "我来了,我看见了,我征服了"的英文原文是什么?