这两个说法都是正确的
首先,先阐明一下函数的定义
设集X包含于R,如果有一个从X到R的对应法则f,是对每个x∈X在对应法则f之下都有唯一的y∈R与x对应则称这个对应法则f是X上的一个函数(科学出版社上册第6-7页)
也就是说函数是一种集合与集合之间的对应法则,一般来说,这些集合通常是数集.结合到这道题上,两个函数是不是相同的,据我对函数定义的理解,应取决于两者的对应法则是否一致.
f与f-1在这里是两种对应法则,所以第一个命题中f与f-1不同,因而不是一个函数;第二个命题中对应法都是f-1,因此是同一个函数.
由于惯性思维,通常人们认为x是自变量,而y是函数.实际上,这只是一种习惯.究竟是关于谁的函数,还要看对应法则所确定的映射关系是以谁为原像的.
至于函数图像,通常横轴上的点用来表示x的坐标,纵轴上的点与y值对应,画函数图像时,可将函数的解析式看作是一个关于(x,y)的方程,对待它就像对待椭圆的方程,双曲线的方程一样,没什么特殊的,x和y地位是平等的,画图像时不用考虑谁是自变量谁是函数,x的值就往x轴上对应,y的值就往y轴上对应,就是如此.