自然对数自然对数底数e的次数x等于其展开式各项分子的底数
众人所知 e=1/0!+1/1!+1/2!+1/3!.
为什么 e^x=x^0/0!+X^1/1!+x^2/2!+x^3/3!.
人气:221 ℃ 时间:2020-02-02 20:15:20
解答
e^x=x^0/0!+X^1/1!+x^2/2!+x^3/3!.
此为e^x的麦克劳林展开式.如果你学习了导数、泰勒公式、麦克劳林展开式,就知道,上面的等式是e^x在x=0处的导数展开式,就像(x+1)^2 展开为 x^2 + 2x + 1 一样.
推荐
- 自然对数底e的来源
- 自然对数e大约等于多少?
- 自然对数的底数e的定义,为什么等于2.71828...请证明
- 10.设a>0,b>0,e是自然对数的底数
- 自然对数的底数
- 且子独不闻夫寿陵余子之学行于邯?未得国能,又失其故行矣,直匍匐而归耳 的故事大意和含义
- 日出前的黎明,日落后的黄昏,以及阴天,天空为什么仍然是明亮的
- 把直线y=-x向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是多少
猜你喜欢