> 数学 >
A为nxn的可对角化矩阵,证明:若B为任何和A相似的矩阵,则B可对角化
人气:155 ℃ 时间:2020-03-14 16:42:11
解答
证明:设C是任意 对角矩阵 ,且与A相似
若B与A相似,根据相似具有传递性,即 C
则B与C相似,
所以B可对角化就是因为A是对角阵,所有与A相似的矩阵均可对角化, A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]B与A相似 B~A则存在可逆矩阵Q使得Q^-1*B*Q=A所以 P^-1*A*P = P^-1*(Q^-1*B*Q)P =(QP)^-1 B(QP)= [λi] 因为 (QP)^-1 B(QP) = [λi] 且(QP)为可逆矩阵 所以B可对角化
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版