原式=[(sinθ) / (1-cotθ)] + [(cosθ) / (1-tanθ)]
={(sinθ) / [1 - (cosθ/sinθ)]} + {(cosθ) / [1 - (sinθ/cosθ)]}
={(sinθ) / [(sinθ-cosθ)/sinθ]} + {(cosθ) / [(cosθ-sinθ)/cosθ]}
=[(sinθ)^2 / (sinθ-cosθ)] + [(cosθ)^2 / (cosθ-sinθ)]
=[(sinθ)^2 / (sinθ-cosθ)] - [(cosθ)^2 / (sinθ-cosθ)]
=[(sinθ)^2 - (cosθ)^2] / (sinθ-cosθ)
=[(sinθ-cosθ)(sinθ+cosθ)] / (sinθ-cosθ)
=sinθ+cosθ
=(√3+1)/2