在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)/(2^n) (1) 设bn=an/n,求数列{bn}的通项公式
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)/(2^n)
(1)设bn=an/n,求数列{bn}的通项公式
(2)求数列{an}的前n项和sn
人气:377 ℃ 时间:2019-08-21 23:19:57
解答
(1)
a(n+1)=(1+1/n)an+(n+1)/(2^n)
a(n+1)/(n+1) = (1/n)an + 1/(2^n)
a(n+1)/(n+1) - (1/n)an = 1/(2^n)
an/n - a(n-1)/(n-1) = 1/2^(n-1)
an/n - a1/1 = 1/2^(n-1) +1/2^(n-2)+..+ 1/2^1
= 1- 1/2^(n-1)
an/n = 2- 1/2^(n-1) = bn
(2)
an/n = 2- 1/2^(n-1)
an = 2n - n(1/2)^(n-1)
consider
1+x+x^2+...+x^n = (x^(n+1) -1) /(x-1)
1+2x+..+n.x^(n-1)
=[(x^(n+1) -1) /(x-1)]'
= { nx^(n+1) - (n+1)x^n + 1 } / (x-1)^2
put x= 1/2
1.(1/2)^0 + 2(1/2)^1+..+n(1/2)^(n-1)
= 4(n.(1/2)^(n+1) - (n+1)(1/2)^n + 1 )
an = 2n - n(1/2)^(n-1)
Sn = n(n+1) - 4(n.(1/2)^(n+1) - (n+1)(1/2)^n + 1 )
推荐
- 设数列{an}满足a1+3a2+3^2a3+...+3^n-1an=n/3,求(1)数列{an}的通项公式(2)设bn=n/an求数列bn的前n项
- 在数列an中,a1=1.an+1=(1+1/n)an +(n+1)/2^n (1)设bn=an/n,求数列{bn}的通项公式
- 在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)/2^n(1)设bn=an/n求数列{bn}的通项公式(2)求数列{an}的前n项和
- 已知数列an满足a1=4 an=4-4/an-1(n大于等于2) 求证bn是等差数列 求数列an的通项公式
- 在数列{an}中,a1=1,a(n+1)=(1+1/n)an+(n+1/2^n)设bn=an/n,求bn的通项公式
- 一儿曰:“我以日始出时去人近,而日中时远也.”怎么改间接引用句?
- 我明天就开学了,
- 已知x∈R,试比较x^4-2x^2+3x和x^2+3x+4的大小关系
猜你喜欢