求与向量a=(7/2,1/2),b=(1/2,7/2)的夹角相等,且模长为1的向量
设所求向量c=(m,n),
|c|=√(m^2+n^2)=1,
设向量a和c夹角为θ
cosθ=a·c/(|a||c|=(7m/2+n/2)/[√(49/4+1/4)*1]=√2(7m/2+n/2)/5,
cosθ=b·c(/|b||c|)=(m/2+7n/2)/√[(1/4+49/4)*1]=√2(m/2+7n/2)/5,
√2(7m/2+n/2)/5=√2(m/2+7n/2)/5,
m=n,
m^2+n^2=1,
m=±√2/2,
n=±√2/2,
m,n应取同号
则向量c=(√2/2,√2/2),c=(-√2/2,-√2/2),
最后一步看不懂,为什么m,n应取同号?
人气:444 ℃ 时间:2020-02-03 18:02:34
解答
因为m=n啊所以才应取同号
建议你这么理解,在m=n之后这么进行你就不会混淆了
m^2+n^2=1,
2m^2=1,
m=±√2/2
n=m=√2/2或n=m=-√2/2
所以,向量c=(√2/2,√2/2),c=(-√2/2,-√2/2),
推荐
- 求与向量a=(7/2,1/2),b=(1/2,7/2)的夹角相等,且模长为1的向量
- 向量a+向量b的模长怎么算
- 已知向量a,b是两个非零向量,满足向量a的模长=向量b的模长=向量a-b的模长=1,则向量b与向量a+b的夹角为?
- 向量A+B的模长=向量A-B的模长=2倍的向量A的模长
- 若|a|=2,|b|=3,|a-b|=√7,则向量a与b的夹角是多少
- 太阳是一个大火球吗?
- 如何只用常用仪器区分CU2S 、CUS
- Come along,I will show you my new stamps.
猜你喜欢