1/x(X+2)+1/x(x+2)(X+4)+1/(X+4)(x+6)+···+1/(x+2000)(x+2002)
人气:487 ℃ 时间:2020-06-18 23:04:16
解答
因为1/(x+n)(x+n+2)=1/2*[1/(x+n)-1/(x+n+2)]
所以原式=1/x-1/(x+2)+1/(x+2)-1/(x+4)+...+1/(x+2000)-1/(x+2002)
=1/x-1/(x+2002)
=2002/x(x+2002)
推荐
- 1/x(x+2)+1/(x+2)*(x+4)+1/(x+4)*(x+6)+.+1/(x+2000)*(x+2002)
- 计算:1/x(x+2)+1/(x+2)(x+4)+1/(x+4)(x+6)+……+1/(x+2000)(x+2002)
- 小弟想问下面这题怎么写
- 求(1/2003-1)x(1/2002-1)x(1/2001-1)x(1/2000-1)x(1/1999-1)...(1/1001-1)x(1/1000-1)的积
- 求(1/2003-1)X(1/2002-1)X(1/2001-1)X(1/2000-1)X1/1999-1)...(1/1001-1)X(1/1000
- dutch 到底是德国还是荷兰?
- 先观察有什么规律,填写空格-1,1,0,1,1,2,( ),5,
- 急死啦,英语词
猜你喜欢