|
消去x可得ky2+y-k=0,
设A(x1,y1)B(x2,y2)由韦达定理可得y1•y2=-1,
∵A、B在抛物线y2=-x上,
∴y12=-x1,y22=-x2,y12y22=x1x2,
∵kOA•kOB=
y1y2 |
x1x2 |
1 |
y1y2 |
∴OA⊥OB,
故以AB为直径的圆过坐标系的原点O.
(2) 设直线与x轴交于N,又k≠0,
∴令y=0,则x=-1,即N(-1,0),
∵S△OAB=S△OAN+S△ONB
=
1 |
2 |
1 |
2 |
=
1 |
2 |
∴S△OAB=
1 |
2 |
(y1+y2)2-4y 1y2 |
=
1 |
2 |
(
|
10 |
解得k=±
1 |
6 |