已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足向量OA+向量OB=
已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足 向量OA+向量OB=t向量OP(O为坐标原点),当\向量PA-向量PB\
人气:180 ℃ 时间:2019-08-21 21:21:39
解答
我想思路是设AB方程y=k(x-2),联立AB方程与椭圆方程,利用韦达定理表示出AB的长度,长度
推荐
- 设椭圆方程为X^2+Y^2/4=1.过点M(0.1)的直线L交椭圆于点A,B两点,O为坐标原点,P满足OP向量=1/2(OA向量+OB向量),N(1/2,1/2)当L绕M旋转时,求
- 直线l:y=kx+根号2与椭圆C:x^2/3+y^2=1交于不同的两点A.B,且向量OA乘向量OB=1,求k值
- 已知椭圆x^2/4+y^2/2=1,过F1的直线l与椭圆C交于A,B两点,若椭圆C上存在点P,使得向量OP=向量OA+向量OB,求直线l,
- 已知椭圆C:x^2/4+y^2=1,直线l与椭圆C相交于A,B两点,向量OA*向量OB=0(O为坐标原点),问:
- 已知椭圆C,x∧2/4+y²=1,直线L于椭圆C相交于A,B两点,OA向量×OB向量=0,
- 求圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆的方程.
- 1.一辆越野车在沙漠中行驶32.5千米耗油5.2升.它要跨越的无人区总路程为1303千米,至少要准备多少升汽油?(得数保留整数)
- 住院时我很难过,怎么翻译?
猜你喜欢