> 数学 >
∫x²/(1+e^x)dx 积分上下限为-1到1
人气:179 ℃ 时间:2020-04-16 09:26:37
解答
P=∫(-1,1)x²/(1+e^x)dx (1)
令x=-t,积分限变为(1,-1),dx=-dt
P=∫(1,-1)t²/(1+e^(-t))d(-t)
=∫(-1,1)t²e^t/(1+e^t)dt
=∫(-1,1)x²e^x/(1+e^x)dx (2)
(1)+(2)得
2P=∫(-1,1)x²(1+e^x)/(1+e^x)dx
=∫(-1,1)x²dx=2∫(0,1)x²dx=2/3
所以P=1/3
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版