> 数学 >
设n是整数,证明数M=n³+3/2n²+n/2为整数,且它是3的倍数.
设n是整数,
证明数M=n³+3/2n²+n/2为整数,
且它是3的倍数.
人气:351 ℃ 时间:2020-04-15 15:50:14
解答
1)
M=n³+3/2n²+n/2=M=n³+(3n+1)n/2
n是奇数,3n+1 是偶数
n是偶数,3n+1 是奇数
数M=n³+3/2n²+n/2为整数 得证
2)
分别设 n=3k,3k+1,3k+2 代入可以很容易证明 它是3的倍数
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版