二维随机变量(X,Y)在区域0≤x≤1,y^2≤x内服从均匀分布 求
(1)(X,Y)的联合分布密度 (2)X与Y的边缘分布密,并问它们是否独立
人气:264 ℃ 时间:2019-10-11 17:12:00
解答
区域面积S=∫∫dxdy=4/3
f(x,y)=1/s=3/4,0≤x≤1,y^2≤x,其他为0
(2)f(x)=∫ [-∞,∞]f(x,y)dy=3√x/2,0≤x≤1,其他为0
f(y)=∫[-∞,∞]f(x,y)dx=(3-3y²)/4 ,-1
推荐
- 设二维随机变量(X,Y)在区域D上服从均匀分布,其中D:0
- 设二维随机变量(X,Y)在区域G={(x,y)|0≦x≦1,x²≦y≦x}上服从均匀分布,求
- 已知二维随机变量(X,Y)是服从区域G:0≤X≤1,0≤Y≤2的均匀分布,求P{X≤1,Y≤1}
- 若已知二维随机变量(X,Y)在区域服从均匀分布
- 概率统计的一道题,设二维随机变量(X,Y)在x轴,y轴及直线x+y+1=0所围成的区域D上服从均匀分布,求相关系数.
- 我想问of同for在什么时候用在句子里面?
- 大陆漂移,海底扩张,与板块构造的主要区别
- 小丽将两个分别装有空气和红棕色二氧化氮气体的玻璃瓶口对口,中间用玻璃板隔开,当把玻璃板抽掉时,观察到红棕色的二氧化氮跑进上方空气瓶中,空气也跑到下方二氧化氮瓶中,由此得出分子运动的结论(二氧化氮密度大于空气密度).小兰在实验时将二氧化氮换成
猜你喜欢