> 数学 >
(江苏2012)设α为锐角,若cos(α+π/6)=4/5,则sin(2α+π/12)=
人气:293 ℃ 时间:2019-12-01 09:19:43
解答
sin(2α+π/12)=sin (α+π/6+α-π/12)
=sin(α+π/6)cos(α-π/12)+cos(α+π/6)sin(α-π/12)
cos(α+π/6)=4/5,α为锐角,则sin(α+π/6)=3/5
cos(α-π/12)=cos(α+π/6-π/4)
=cos(α+π/6)cosπ/4+sin(α+π/6)sinπ/4
=4/5*√2/2+3/5*√2/2
=7√2/10
sin(α-π/12)=sin(α+π/6-π/4)
=sin(α+π/6)cosπ/4-cos(α+π/6)sinπ/4
=3/5*√2/2-4/5*√2/2
=-√2/10
带入原式得:
sin(2α+π/12)=sin(α+π/6)cos(α-π/12)+cos(α+π/6)sin(α-π/12)
=3/5*7√2/10+4/5*(-√2/10)
=17√2/50不好意思,我已经解决。另外,建议你这样做:sin(2α+π/12)=sin〔2(α+π/6)-π/4〕=√2/2(sin(2α+)π/3)-cos(2α+π/3)).然后用二倍角解决即可。很久没做题,公式记得不多。解题方法有很多,大家互相交流交流,多谢提点。
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版