∴a2-3a-1=a2-3a+abc=a(bc+a-3)=a(bc-b-c+1)=a(b-1)(c-1),
∴
| a |
| a2−3a−1 |
| 1 |
| (b−1)(c−1) |
同理可得:
| b |
| b2−3b−1 |
| 1 |
| (a−1)(c−1) |
| c |
| c2−3c−1 |
| 1 |
| (a−1)(b−1) |
又
| a |
| a2−3a−1 |
| b |
| b2−3b−1 |
| c |
| c2−3c−1 |
| 4 |
| 9 |
∴
| 1 |
| (b−1)(c−1) |
| 1 |
| (a−1)(c−1) |
| 1 |
| (a−1)(b−1) |
| 4 |
| 9 |
∴
| (a−1)+(b−1)+(c−1) |
| (a−1)(b−1)(c−1) |
| 4 |
| 9 |
| 4 |
| 9 |
整理得:
| 4 |
| 9 |
将abc=-1,a+b+c=4代入得:ab+bc+ac=-
| 1 |
| 4 |
则a2+b2+c2=(a+b+c)2-2(ab+bc+ac)=
| 33 |
| 2 |
故答案为:
| 33 |
| 2 |
