> 数学 >
如题:设a>b>0,则a²+[1/(a*b)] +[1/(a*(a-b))]的最小值是?( D
A.1 B.2 C.3 D.4
PS:老师今天没来上课,这题是试卷上的,我做了很久做不出来,看了答案解释也不太明白(特别是“a²+[1/(a*b)] +[1/(a*(a-b))]=a²+1/[b*(a-b)]≥a²+(4/a²)≥4”这部分,不知是怎样配凑而来的,碰到要配凑的就不会了,不懂配凑),跟同学讨论了,没多大结果(╯▽╰)希望数详细学达人能够再详细地帮忙解说一下其解题过程,根据回答的具体程度,50,辛苦了!
a²+[1/(a*b)] +[1/(a*(a-b))]=a²+1/[b*(a-b)]≥a²+(4/a²)≥4,当且仅当b=a-b
且a²=4/a²,即a=√2,b=√2/2时,“=”都成立,故原式的最小值为4,选D.
人气:454 ℃ 时间:2019-12-08 00:58:13
解答
[1/(a*b)] +[1/(a*(a-b))] = 1/[b*(a-b)]通分,就能求得这部分简单的
有这么一条公式(a-b)²>=0 所以 (a+b)²>=4ab所以 ab=2*a*(2/a)=4O(∩_∩)O谢谢数学达人,您的数学功底真够雄厚的,顺便问一下:当看到一道关于基本不等式的题目时,怎么知道该题考的不等式是要配凑的呢,配凑的技巧,我不太懂ing...请问您能具体指点一下吗?像这种求最大值,最小值的题目 基本上都是用到 x²+y²>=2xy,(x+y)²>=4xy,x+y>=2√xy,|x+y|<=|x|+|y|这些公式的 你可以留意下记下这些公式,以及用法 然后找些类似的题目做做; 熟练了就会了
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版