> 数学 >
设函数f(x)=ax²+bx+1(a,b∈R) (1)若f(-1)=0,且对于任意实数x,f(x)≥0都成立,求f(x)的解析式
设函数f(x)=ax²+bx+1(a,b∈R)
(1)若f(-1)=0,且对于任意实数x,f(x)≥0都成立,求f(x)的解析式,
(2)在(1)的条件下,当x∈[-2,2]时,求函数Q(x)=ax²+btx+1的最大值g(t)
人气:299 ℃ 时间:2019-08-19 15:15:55
解答
(1)∵f(-1)=0,且对于任意实数x,f(x)≥0都成立,∴x=-1时,有最小值f(-1)=0,即-b/2a=-1,a-b+1=0∴a=1,b=2.f(x)的解析式:f(x)=x²+2x+1(2)在(1)的条件下,f(x)=x²+2x+1,函数y=x²+2tx+1的最小点为x0=-...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版