> 数学 >
设x>0,y>0,且√x(√x+√y)=3√y(√x+5√y).求2x+√xy+2y/x-√xy-y.
人气:217 ℃ 时间:2020-06-29 21:41:42
解答
解析:
已知x>0,y>0,且√x(√x+√y)=3√y(√x+5√y),那么:
x+√(xy)=3√(xy) +15y
即x-2√(xy) -15y=0
(√x+3√y)(√x -5√y)=0
由于√x+3√y>0,所以解上述方程可得:
√x =5√y
即x=25y
那么:[2x+√(xy)+2y]/[x-√(xy)-y]
=[2(x+y)+√(xy)]/(x-y-√(xy))
=(52y+5y)/(24y-5y)
=57/19
=3
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版