设F1,F2为椭圆C:x^2/6m^2+y^2/2m^2=1的左右焦点,点P∈C,且向量PF1*向量PF2=0,|向量PF1|*|向量PF2|=4
(1)求椭圆方程
(2)作以F2为圆心,以1为半径的圆,过动点Q作F2的切线,切点为M,且使|向量QF|=根2|向量QM|,求动点Q轨迹方程
人气:405 ℃ 时间:2020-02-15 08:46:54
解答
答案:(1)∵c2=a2-b2,∴c2=4m2.又∵=0
∴PF1⊥PF2,
∴|PF1|2+|PF2|2=(2c)2=16m2
由椭圆定义可知|PF1|+|PF2|=2a=,
(|PF1|+|PF2|)2=16m2+8=24m2
从而得m2=1,c2=4m2=4,c=2.
∴F1(-2,0)、F2(2,0).
(2)∵F1(-2,0),F2(2,0),
由已知得|QF1|=|QM|,即|QF1|2=2|QM|2,所以
有|QF1|2=2(|QF2|2-1),
设Q(x,y),则(x+2)2+y2=2[(x-2)2+y2-1]
即(x-6)2+y2=32(或x2+y2-12x+4=0)
综上所述,所求轨迹方程为(x-6)2+y2=32.
推荐
- 已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为椭圆C上的一点,且PF1⊥PF2,若△PF1F2的面积为9,则b的值为( ) A.3 B.23 C.4 D.9
- 设F1,F2分别是椭圆x^2/4+y^2=1的左右焦点.若点p是该椭圆上的一个懂点,求向量PF1*向量PF2的最大和最小值
- 已知F1,F2是椭圆C x^2/a^2+y^2/b^2=1(a>b)的两个焦点,P是C上一点,PF1、PF2为向量,且互相垂直
- 已知F1(-c,0),F2(c,0)为椭圆的两个焦点,p为椭圆X^2/a^2+y^2/b^2=1上的一点且向量PF1*向量PF2=C^2,
- F1、F2分别是椭圆x^2/4+y^2=1的左右焦点.若P是椭圆上的一个动点,求:向量PF1×向量PF2的最值
- 不论x取何值时,等式mx-n-4x=3恒成立,则m-n的值为多少
- 将一定量的CO2通入足量的石灰水的烧杯中,烧杯增重8.8g,求生成白色沉淀的质量.
- 为什么若滤纸与漏斗内壁有空隙,则过滤的速度会比较慢?
猜你喜欢