tanA+tanB |
1-tanAtanB |
3 |
又∵tanC=tan[π-(A+B)]=-tan(A+B)
∴tanC=
3 |
又∵0<C<π
∴∠C=
π |
3 |
(2)由题意可知:S△ABC=
1 |
2 |
1 |
2 |
π |
3 |
| ||
4 |
3
| ||
2 |
由余弦定理可得:c2=a2+b2-2abcosC=(a+b)2-3ab
∴(a+b)2=3ab+c2=3×6+(
7 |
又∵a>0,b>0
∴a+b=5
tanA+tanB |
1-tanA•tanB |
3 |
7 |
3
| ||
2 |
tanA+tanB |
1-tanAtanB |
3 |
3 |
π |
3 |
1 |
2 |
1 |
2 |
π |
3 |
| ||
4 |
3
| ||
2 |
7 |