高一数学:已知二次函数f(x)=ax2+bx+c(a<0)对一切实数都有f(2+x)=f(2-x),则不等式f(2x+1)则不等式f(2x+1)求过程及最终答案,谢谢!
人气:392 ℃ 时间:2020-03-25 18:37:25
解答
f(2+x)=f(2-x),即:
a(2+x)^2+b(2+x)+c=a(2-x)^2+b(2-x)+c
(4a+b)x=-(4a+b)x
对一切实数x上式也成立,则必须
4a+b=0
b=-4a
f(2x+1)-f(3-x)
=[4ax^2+4ax+a-8ax-4a+c]-[ax^2-6ax+9a-12a+4ax+c]
=3ax^2-2ax<0
因为a<0,两边除以a
3x^3-2x>0
解不等式,得 x<0或x>2/3
推荐
- 已知二次函数f(x)=ax^2+bx+c的图像经过点(-2,0)且不等式2x≤f(x)≤1/2x^2+2对于一切实数x都成立.
- 已知二次函数f(x)=ax^2+bx+c的图像经过点(-2,0)且不等式2x≤f(x)≤1/2x^2+2对于一切实数x都成立.
- 设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立. (1)求函数f(x)的表达式; (2)设g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在区间[1
- 已知二次函数f(x)=ax2 +bx+c,不等式f(x)>-2x的解集为(1,3) (1) 若方程f(x)+6a=0有两个相等的实数
- 已知二次函数f(x)=ax^+bx=c且f(—1)=0,是否存在常数a,b,c,使得不等式x≤f(x)≤1/2(x^+1)对一切实数x都成立?若存在,求出实数a,b,c的值;若不存在,请说明理由.
- 金丝猴是典型的森林树栖动物,常年栖息于海拔1500-3300米的森林中,这句话怎么翻译
- How _____ the girl in black trousers _____ ( feel ) today?She __________ (feel ) very happy.
- 1.求积分上限为2,下限为1的定积分∫1/(2x-1)dx的值.
猜你喜欢