已知函数f(x)=1+sinxcosx,g(x)=cos^2(x+π/12),
(1)设x=X0是函数y=f(X)的图像上的一条对称轴,求g(X0)的值.(2)求使h(x)=f(wx/2)+g(wx/2),(w大于0),在区间[-2π/3,π/3]上是增函数的w的最大值
人气:311 ℃ 时间:2020-05-21 05:25:32
解答
(1)f(x)=(1/2)sin2x+1,x0=kπ+π/4.g(x0)=[cos(kπ+π/4+π/12)]^2=[cos(kπ+π/3)]^2=(+-cosπ/3)^2=1/4.(2)h(x)=(1/2)sinwx+1+[cos(wx/2+π/12)]^2=(1/2)sinwx+(1/2)cos(wx+π/6)+3/2=(1/2)sinwx+(1/2)coswxcosπ/...(1)f(x)=(1/2)sin2x+1,x0=kπ+π/4。x0不是等于kπ/2+π/4吗?哎呀。我总写错哈那后面应该都错了吧?(1)g(x0)=[cos(kπ/2+π/4+π/12)]^2=[cos(kπ/2+π/3)]^2=(+-sinπ/3)^2=3/4。(2)与(1)无关
推荐
猜你喜欢