在平行六面体ABCD-A'B'C'D'中,AB=4,AD=3,AA'=5,角BAD=90度,角BAA'=角DAA'=60度,求AC'的长
人气:234 ℃ 时间:2020-05-23 14:09:45
解答
用向量法
向量AC'=AC+CC'=AB+BC+CC',
AC'^2=AB^2+BC^2+CC'^2+2AB·BC+2AB·CC’+2BC·CC’
=|AB|^2+|BC|^2+|CC'|^2+2|AB||BC*cos90°+2|AB||CC'|cos60°+2|BC||CC'|cos60°
=16+9+25+2*4*3*0+2*4*5*1/2+2*3*5*1/2
=85,
|AC'|=√85
推荐
- 已知平行六面体ABCD-A1B1C1D1中AB=4,AD=3,AA1=5,∠BAD=90,∠BAA1=∠DAA1=60,则|AC1|=_.
- 如图,平行六面体ABCD-A'B'C'D'中,AB=5,AD=3,AA'=7,∠BAD=60°∠BAA'=∠DAA'=45°,求AC'的长.
- 已知平行六面体ABCD-A'B'C'D'中,AB=4,AD=3,AA'=5,
- 底面为矩形的四棱柱ABCD-A'B'C'D'中,AB=4 ,AD=3,AA’=5,∠BAD=90°,∠BAA'=∠DAA'=60°,求AC'
- 平行六面体ABCD-A'B'C'D'中,AB=1,AD=2,AA'=3,∠AA'=3,∠BAD=90º,∠DAA'=60º,则AC'长多少
- 作文 A day at school (不少于6句,根据问题和提示)
- 2/9+3/4=5/9x 解方程
- 英语翻译
猜你喜欢