卫星由低轨道运动到高轨道,要加速,加速后作离心运动,势能增大,动能减少,到高轨道作圆周运动时速度小于低轨道上的速度.
当以第一宇宙速度发射人造卫星,它将围绕地球表面做匀速圆周运动;若它发射的速度介于第一宇宙速度与第二宇宙速度之间,则它将围绕地球做椭圆运动.有时为了让卫星绕地球做圆周运动,要在卫星发射后做椭圆运动的过程中二次点火,以达到预定的圆轨道.设第一宇宙速度为v,则由第一宇宙速度的推导过程有G =m .在地球表面若卫星发射的速度v1>v,则此时卫星受地球的万有引力 应小于卫星以v1绕地表做圆周运动所需的向心力m ,故从此时开始卫星将做离心运动,在卫星离地心越来越远的同时,其速率也要不断减小,在其椭圆轨道的远地点处(离地心距离为R′),速率为v2(v2<v1),此时由于G >m ,卫星从此时起做向心运动,同时速率增大,从而绕地球沿椭圆轨道做周期性的运动.如果在卫星经过远地点处开动发动机使其速率突然增加到v3,使G =m ,则卫星就可以以速率v3,以R′为半径绕地球做匀速圆周运动.同样的道理,在卫星回收时,选择恰当的时机使做圆周运动的卫星速率突然减小,卫星将会沿椭圆轨道做向心运动,让该椭圆与预定回收地点相切或相交,就能成功地回收卫星.
通过以上讨论可知:卫星在某一圆轨道上做匀速圆周运动时,其速率为一确定值,若卫星突然加速(或减速),则卫星会做离心(或向心)运动而离开原来的轨道,有人提过这样的问题:飞船看见前方不远处有一和它在同一轨道上同向做圆周运动的卫星,此时若仅使它速度增大,能否追上卫星?若飞船加速,则它会离开原来的圆轨道,所以不能追上.它只有在较低的轨道上加速或在较高的轨道上减速,才有可能遇上卫星.