y= ∫[0,x](t-1)^3(t-2)dt,dy/dx(x=0)
人气:281 ℃ 时间:2019-12-06 10:53:37
解答
y= ∫ (t-1)^3(t-2)dt,
dy/dx = (x-1)^3(x-2).
推荐
- 设f(x)连续,Y=∫0~X tf(x^2-t^2)dt 则dy/dx=?
- dx/dt=y dy/dy=x x(0)=-1 y(0)=0
- 设y=∫(上4下x) √1+t^2·dt,求dy 设y=∫(上x^2下1)1/1+t·dt,求dy/dx
- y=∫(x 1)sin(t∧2)dt,求dy/dx
- dx/dt=x+t,dy/dt=-y+t,求x,y(t为常数).
- By the year 2025,four fifths of the population will be living in cities.
- 用英语介绍汉语
- 取一个番茄,用刀纵切,你怎样实验.说明果实是个器官
猜你喜欢