> 数学 >
求y=x^(1/x)的极值
人气:330 ℃ 时间:2020-10-01 20:02:01
解答
ln(y)=(1/x)ln(x)
求导
(1/y)*y'=-(1/x^2)ln(x)+(1/x)*(1/x)=(1/x^2)[1-ln(x)]
y'=(1/x^2)*[1-ln(x)]*x^(1/x)=0
则1-ln(x)=0
x=e
极值为e^(1/e)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版