设函数f(x)=ax2+bx+c (a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.
人气:326 ℃ 时间:2020-05-30 21:43:26
解答
证明:f(0)=c为奇数f(1)=a+b+c为奇数,则a+b为偶数所以a,b同奇偶假设整数根t,所以f(t)=0 即at2+bt+c=0若a,b同为偶数,则at2+bt为偶数,所以at2+bt+c为奇数可得at2+bt+c≠0与at2+bt+c=0矛盾若a,b同为奇数,...
推荐
猜你喜欢
- 英文物理题(牛二律)
- 一根钢材长2米,截去了30%后,在截去0.4米,还剩多少米?
- 由两个相同的字组成的字比如"林"
- f(x)是R上的奇函数,且x>=0时,f(x)=x^2,若对任意 t
- After lunch,the little boy _____________ in the park.
- 将一块棱长是8分米的正方体钢坯锻造成长0.8米、宽0.64米的长方体钢材,锻成的钢材有多厚(用方程解)?
- 分词做状语时的否定形式及虚拟语气倒装时的否定形式
- 张师傅做一个零件要3分钟,徒弟小王做一个零件要5分钟,他们合作了一段时间共做了800个零件.师傅两人各做