> 数学 >
我们在计算(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1),发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算是能用乘法公式计算,解答过程如下;原式=(2-1)(2+1)(2^2+1)(2^4+10(2^8+1)(2^16+1)(2^32+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=.=2^64-1
你能用上述方法算出24×(5^2+1)(5^4+1)(5^8+1)(5^16+1)(5^32+1)+1的值
人气:447 ℃ 时间:2020-05-09 12:54:18
解答
24×(5^2+1)(5^4+1)(5^8+1)(5^16+1)(5^32+1)+1
=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)(5^32+1)+1
=(5^4-1)(5^4+1)(5^8+1)(5^16+1)(5^32+1)+1
=...
=(5^32-1)(5^32+1)+1
=5^64-1+1
=5^64为什么24没有了24=5^2-1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版