> 数学 >
求证:3+tan1°•tan2°+tan2°•tan3°=
tan3°
tan1°
人气:164 ℃ 时间:2020-04-15 23:12:59
解答
证明:3+tan1°•tan2°+tan2°•tan3°
=(1+tan1°•tan2°)+(1+tan2°•tan3°)+1
=
tan2°−tan1°
tan(2−1)°
+
tan3°−tan2°
tan(3−2)°
+1
=
tan2°−tan1°+tan3°−tan2°
tan1°
+1
=-1+
tan3°
tan1°
+1
=
tan3°
tan1°

∴原等式成立.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版