| sin(α−3π)+cos(π−α) |
| sin(−α)−cos(π+α) |
=
| sin(−4π+π+α)−cosα |
| −sinα+cosα |
=
| sin(π+α)−cosα |
| −sinα+cosα |
| −sinα−cosα |
| −sinα+cosα |
=
| sinα+cosα |
| sinα−cosα |
| tanα+1 |
| tanα−1 |
又tan(5π+α)=m,∴tan(π+α)=tanα=m,∴原式=
| tanα+1 |
| tanα−1 |
| m+1 |
| m−1 |
故答案为:
| m+1 |
| m−1 |
| sin(α−3π)+cos(π−α) |
| sin(−α)−cos(π+α) |
| sin(α−3π)+cos(π−α) |
| sin(−α)−cos(π+α) |
| sin(−4π+π+α)−cosα |
| −sinα+cosα |
| sin(π+α)−cosα |
| −sinα+cosα |
| −sinα−cosα |
| −sinα+cosα |
| sinα+cosα |
| sinα−cosα |
| tanα+1 |
| tanα−1 |
| tanα+1 |
| tanα−1 |
| m+1 |
| m−1 |
| m+1 |
| m−1 |